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A B S T R A C T   

Alzheimer’s disease (AD) is a primary cause of dementia. Its early diagnosis is crucial to delay the progression of 
the disease. So far, many computer aided diagnosis (CAD) methods that combined deep learning algorithms and 
structural MRI have achieved encouraging results. To improve the AD diagnosis performance, more and more 
models are based on 3D algorithms, which make the training and deployment of these methods unaffordable. In 
this study, a CNN and swin-transformer based efficient model, Efficient Conv-Swin Net (ECSnet), was developed. 
In this model: (1) a 2.5D-subject method and two-stream structure are used to help the model to encode 3D 
information to 2D feature maps; (2) convolution blocks are applied in the early stages of the transformer-based 
backbone network to improve the generalization ability; (3) a series of lightweight approaches are applied to 
reduce the parameters and computational cost of the model to enable the model to train and infer efficiently. Due 
to the lack of multi-center data and the differences between test sets, it is difficult to make a fair comparison 
between the previous methods. Our model was trained on the ADNI dataset and evaluated on an independent test 
set from AIBL. After being lightened, our proposed method showed no performance degradation on both ADNI 
and AIBL compared to models such as swin-T tiny. The ECSnet achieved 92.8% balance accuracy and 91.1% 
sensitivity on the AIBL, which are better than those of previous works while the model is more efficient than 
those 3D methods.   

1. Introduction 

Alzheimer’s disease (AD) is one of the most prevalent progressive 
neurological diseases and a primary cause of dementia [1]. About 44 
million people worldwide are diagnosed with AD each year, and this 
number is expected to grow to 131.5 million by 2050[2]. The progres
sion of AD will result in the gradual deterioration, impairment of 
memory and cognitive functions, eventually leading to irreversible 
neuron damage in the brain and impairment of the ability of daily living 
[3]. As a result, AD has become a public health issue worldwide. Yet 
there is still no treatment proven to be effective in preventing the pro
gression of AD, early diagnosis of AD is considered necessary to delay the 
progression of cognitive impairment and improve the quality of life of 
patients [4]. Computer aided diagnostic (CAD) can automatically di
agnose diseases through developed algorithms with various medical 
data [5–7], and reduce doctors’ involvement in the diagnosis pipeline, 
making the diagnoses more efficient. With the increase of AD patients, 
the need for effective CAD is also increasing. 

Imaging techniques that can be used to observe the progression of AD 
in patients’ brain include structural magnetic resonance imaging (sMRI), 
functional magnetic resonance imaging (fMRI), positron emission to
mography (PET) and diffusion tensor imaging (DTI) etc. Although fMRI, 
PET and DTI can detect changes in neural activity or lesions in patient’s 
brain effectively [8–13], sMRI remains the most prevalent imaging 
technique due to the higher cost, complex detection process and longer 
scanning time of those techniques. sMRI are sensitive to morphological 
changes caused by brain atrophy in gray matter (GM) and white matter 
(WM) structures. With the development of machine learning techniques, 
many AD diagnosis algorithms with sMRI have been proposed for CAD. 
Traditional machine learning-based methods split brain sMRI images 
into different regions of interest (ROIs) by structural template and apply 
specific algorithms to extract structural variations or volume changes 
within regions considered relevant to the progression of AD [14,15], 
then a classification model will be trained by feeding these features into 
an ML model such as random forest or support vector machine. 

Deep learning (DL) methods are gradually becoming mainstream in 
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the development of CAD, so that the classification algorithms repre
sented by convolutional neural network (CNN) have been widely stud
ied in the AD diagnosis task [16–18]. Compared with traditional 
machine learning methods, CNN and other deep learning models are 
mostly data-driven models that can automatically mine the latent 
structural features in the images [19], and the relatively large amount of 
sMRI data serves as a good data support for deep learning algorithms. 
Transformer-based models such as ViT [17] have been gradually applied 
in the CAD studies such as AD diagnosis for their excellent performance, 
where such models apply the self-attention mechanism to emphasize the 
dependencies between long sequences instead of learning a global rep
resentation. However, the main disadvantage of visional transformer 
models is that they require a large amount of data for training. 

The use of deep learning algorithms instead of feature selection 
methods based on prior knowledge to extract sMRI image features is 
considered to better avoid the loss of key features due to manual se
lection. But in medical images field, deep learning models often face the 
problem that the size of the available dataset is similar to or even smaller 
than the number of features extracted by the model, also known as the 
“curse of dimensionality”[21,22]. When the dataset is relatively small 
and the task is difficult, the deep learning models are prone to overfitting 
rapidly during training, resulting in a poor performance on the unseen 
data. In order to achieve better AD diagnosis performance, many works 
in recent years have chosen to train an end-to-end 3D model to extract 
features or develop a method which combines a risk region identifica
tion model with a classification model. Those large models need to be 
trained and deployed on high-performance servers, which is inconve
nient for research and clinical application, and the larger model capacity 
also leads to impairment of generalization ability. 

Although deep learning methods have achieved many encouraging 
results, the lack of additional multicenter test data in many previous 
studies makes it difficult to effectively assess the model performance; 
and the differences in test sets due to various data screening criteria 
make the comparisons between different methods inconvenient and 
unfair. The problems limit the clinical application of deep learning 
methods, so it is necessary to compare models by using multi-center data 
as well as similar test sets. 

To solve the above problems, an efficient deep learning network, 
Efficient Conv-Swin Net (ECSNet) based on CNN and swin-transformer 
[35] is proposed in this paper and the performance of the model was 
evaluated on an independent test set. Firstly, the model applies an early- 
stage CNN method and two-stream network structure to encode the 3D 
input images into 2D feature maps in a 2.5D-subject approach, allowing 
the model to encode as much information as possible to help the 
following swin-transformer to further extract features. We then apply a 
series of lightweight approaches in the convolution blocks and swin- 
transformer blocks to reduce parameters and computational cost, 
which also reduce the model capacity and make it efficient in training 
and inference phases while alleviating the overfitting caused by the lack 
of data. 

2. Related work 

In this section, we will briefly introduce the previous automatic AD 
diagnosis methods based on sMRI and deep learning in recent years, and 
review the lightweight techniques for convolution and attention 
mechanisms. 

2.1. Deep learning models to diagnosis Alzheimer’s disease with sMRI 

Following the review of the deep learning methods for AD diagnosis 
[23], we divide previous deep learning methods into four categories: 2D 
slice-level, 2D subject-level, 3D patch-level (3D ROI-level) and 3D 
subject-level. The 2D slice-level, 2D subject-level and 3D subject-level 
models are trained on relatively complete or partially cropped sMRI 
images, and the 3D patch-level methods select the ROI that is considered 

effective for the task based on prior knowledge or an identification al
gorithm from whole-brain sMRI to perform the diagnosis. 

For 2D slice-level and 2D subject-level methods, many of those 
previous works train their models on large-size natural image datasets 
such as ImageNet and transfer the models to the target medical datasets 
for fine-tuning, expecting the cross-domain knowledge can alleviate the 
overfitting; or train a self-supervised model like Auto Encoder or 
Generative Adversarial Networks (GAN) on target medical image data
sets, then transferring the encoder or discriminator to the classification 
task [24,25]. Kang et al. [26] input all coronal-plane 2D slices obtained 
from 3D sMRI scans into DCGAN for unsupervised training, then transfer 
the discriminator to the AD/NC (normal control) task and select 2D 
slices at specific positions to feed into the network for fine-tuning, finally 
the model achieved accuracy of 90.36% and AUC of 0.897. 

Because 3D sMRI images contain more information about brain 
structural changes, models that extract features via 3D algorithm are 
considered better in identifying AD-related lesions or atrophy, so most 
studies in recent years have chosen to use 3D patch-level or 3D subject- 
level images with 3D DL algorithms. Zhu et al. [27] split the original 3D 
sMRI into non-overlapping 3D patches, and made a group comparison 
on AD group and NC group of patch-level features at one patch location 
respectively using a t-test, considered that the patches with larger t- 
values between the two groups are more likely to include AD-related 
brain changes. Therefore, some patches with larger t-values were 
selected as training data, the final AD/NC classification accuracy on the 
ADNI reached 92.4%. Lian et al. [28] trained an FCN to generate disease 
risk maps representing the AD-related regions concerned by the model, 
and selected 36 high-risk 3D patches for the classification model, which 
achieved accuracy of 91.9% and 89.8% on ADNI-2 and AIBL respec
tively. Hedayati et al. [29] trained an unsupervised convolutional auto 
encoder to extract features from 3D images registered by different 
templates, and then got the classification results by using another one 
CNN. Finally, the method achieved accuracy of 95% on ADNI. 

While the transfer learning, self-supervised learning and 3D models 
have shown potential performance, their common disadvantage is that 
the computational overhead is huge and the training often takes a long 
time. At the same time, there are also some problems such as models pre- 
trained on natural images may not match classification tasks on medical 
images, and 3D models are prone to overfit due to the large model ca
pacity [18]. These problems limit the development and application of 
the models, making it necessary to design an efficient end-to-end model. 

2.2. Efficient convolution & attention mechanism 

The CNN models extract latent information through the stacked 
convolutional layers. Stacking a large number of convolution layers to 
make the model deeper is an effective way to improve the performance, 
but that means more parameters and computational overhead. In order 
to improve the training and inference efficiency with less impairment of 
the performance, many lightweight methods have been proposed. 
AlexNet proposed the group convolution [30], which reduces the 
computational complexity by grouping feature maps and convolution 
kernels. The depth-wise separable convolution based on group convo
lution proposed by Howard et al. [31] further reduces parameters and 
computational complexity by combining deep-wise convolution and 
point-wise convolution while maintaining good performance. DenseNet 
and GhostNet [32,33] consider that deep learning models extract many 
redundant feature maps in forward propagation. For this reason, Den
seNet reduces feature maps obtained in convolution and introduces 
feature reuse which combines the feature maps from the early layer with 
those of the deep layers; GhostNet also reduces the feature maps ob
tained by convolution operation, and linearly projects the feature maps 
to get the “redundant” parts. 

ViT proposed by Dosovitskiy et al. [20] splits the images into patches 
and embeds them into token vectors, thus introducing the transformer 
structure from NLP into the CV task. Different from traditional CNN 
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models, visional transformer models extract image features without 
convolution operations, but apply self-attention mechanisms to encode 
connections within different patches [34]. The standard self-attention 
mechanism in ViT focuses on the regions that are crucial for the task 
by weighting the feature maps, for which three feature matrices are 
obtained by linearly projection and are performed matrix multiplication 
between each other to get the attention maps. The matrix multiplica
tions make the computational complexity O((hw)2) where h × w is the 
image size. To reduce the computational overhead of the self-attention 
mechanism, some methods apply a local attention approach or an 

attention mechanism with less computational complexity to replace the 
original global attention[35,36]. Swin-transformer[35] applies a hier
archical structure to reduce the size of the feature map and converge the 
information, and the local self-attention within no-overlapped local 
window makes the computational complexity linear to the image size of 
h × w; separable self-attention[37] replaces the matrix query in atten
tion mechanism by a vector, and simplifies matrix multiplications as 
vector element-wise multiplication operation, also resulting in a linear 
complexity of the image size of h × w. 

3. Method 

Firstly, this section presents the sources of the data used in this study, 
the preprocessing pipeline and the proposed 2.5D method; then we will 
describe the details of the proposed ECSnet, including the overall 
structure and the lightweight approaches for convolution and swin- 
transformer blocks. 

3.1. Materials 

All data used in this study were obtained from Alzheimer’s Disease 
Neuroimaging Initiative [38] (ADNI, https://adni.loni.usc.edu) and the 
Australian Imaging Biomarkers & Lifestyle Flagship Study of Aging [39] 
(AIBL, https://aibl.csiro.au). 

Table 1 
The demographic information, including datasets, groups, gender, age, MMSE 
scores and ApoE4.  

Dataset Research 
group 

Gender 
(Male/ 
Female) 

Age 
(Mean ±
std) 

MMSE 
(Mean ±
std) 

ApoE4 
positive(%) 

ADNI AD(n =
336) 

184/152 75.12 ±
8.09 

23.15 ±
2.09  

68.75 

NC(n =
529) 

230/299 73.64 ±
6.50 

29.16 ±
1.07  

29.49 

AIBL AD(n = 79) 33/46 73.34 ±
7.77 

20.42 ±
5.46  

68.35 

NC(n =
449) 

184/265 72.47 ±
6.21 

28.73 ±
7.21  

26.16  

Fig. 1. Schematic diagram of the proposed AD diagnosis pipeline. The upper left part of the figure shows main operations of the sMRI preprocessing pipeline; and the 
2.5D method and random data augmentation are shown in upper right and lower left part; Our ECSnet (lower right) consists of 2 backbone networks, each backbone 
contains two CNN stages and two swin-transformer stages, and the feature vectors extracted by the two-stream model are combined and input into the single-layer 
MLP to get the diagnosis result. 
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ADNI provides a public AD dataset for researchers worldwide to 
explore the early diagnosis methods and corresponding biomarkers of 
AD. There is a large amount of data from over 2000 subjects, including 
longitudinal sMRI scans, neuropsychological testing and biomarkers, 
etc. Most previous studies extracted and screened their own subsets from 
origin ADNI dataset with different criteria and do not provide repro
ducibility details, making it difficult to fairly compare the performance 
of different methods. When filtering the data, we excluded subjects 
whose diagnosis results repeatedly converted between AD and NC and 
the selected individuals can be divided into 529 NC and 336 CE subjects. 
Finally, we obtained a total of 865 1.5 T/3T 3D T1-weighted sMRI scans 
of different subjects from ADNI-1, ADNI-2 or ADNI-3 at their first visit. 

AIBL was launched in 2006 and is the largest such study in Australia. 
The dataset contains longitudinal sMRI scans, neuropsychological 
testing, genetic information and lifestyle information of more than 800 
subjects. In AIBL, we also excluded subjects with repeated AD/NC 
conversion, and the sMRI scans at selected subjects’ first visit were ob
tained. Finally, there are 79 AD subjects and 449 NC subjects from AIBL. 
The demographic details of these subjects from the ADNI and AIBL 
datasets is shown in Table 1. 

We didn’t use no-imaging information such as demographic infor
mation or scores of neuropsychological scales in our study, which were 
used in some previous research [40,41], but only based on sMRI scans. 
Some previous studies used scores obtained from neuropsychological 
scales such as Mini-Mental State Examination (MMSE) and Clinical 
Dementia Rating (CDR) as classification features in their models. We 
consider that applying these scores that relate to the golden standard 
(group label) in developments of the methods is contrary to the intention 
of CAD and prone to result in information leakage which is unfair for 
comparison between different methods. 

3.2. Data preprocessing 

The sMRI scans acquired from ADNI and AIBL are 3D T1-weighted 
images in Neuroimaging Informatics Technology Initiative (NIfTI) 
format. In order to remove non-brain tissue and align the brain to a 
uniform standard space, the computational anatomy toolbox CAT12 
(available at https://www.neuro.uni-jena.de/cat/) was used to prepro
cess the image data. The main operations in the preprocessing pipeline 
are: 1. bias correction; 2. alignment with MNI152 template; 3. non-brain 
tissues removal; 4. segmentation of gray matter (GM), white matter 
(WM) and cerebrospinal fluid; 5. modulation of GM & WM; 6. Gaussian 
smoothing, etc. Finally, we obtained standardized 3D GM and WM im
ages with the size of 113 × 137 × 113 voxels and spatial resolution of 
1.5 × 1.5 × 1.5 mm3. 

Patients with AD typically have moderate cortical atrophy in GM, 
and the reduction of tracts due to lesions in the WM such as myelin 
sheath injury will reduce the WM volume [42]. Therefore, in this study, 
we summed the standardized 3D GM and WM images as input images. 

3.3. 2.5D subject-level method 

As mentioned in Section 2, sMRI-based AD diagnosis models can 
extract features from 2D image slices or 3D images by different types of 
algorithms. Models which use 2D slices are prone to lose some task- 
relevant features due to the manually selected slice positions. Models 
based on 3D images can extract 3D spatial structure information, but the 
larger model capacity brought by the large number of parameters in 3D 
convolution or other 3D algorithms make them prone to overfit on 
small-size datasets and take a long time to train. 

In order to inherit the relative efficiency of 2D models and retain the 
3D spatial information, our proposed 2.5D subject-level method inspired 
by visual transformer models stacks multiple 2D slices into the 2.5D 
images and partitions them into patches, then the tokens obtained by 
embedding the patches are input into transformer blocks to extract 
features. By encoding 3D images through 2D algorithm, during the 

training process, the model is able to automatically select task-relevant 
3D features to encode into 2D feature maps. Specifically, as shown in 
Fig. 1, in our 2.5D method, when a 3D image (size = h × w × d) is sliced 
into 2D slices, the slice plane is selected as the horizontal plane (h × w), 
and then the 2D slices are stacked along the vertical axis. Because the 
number of the 2D feature maps extracted by the networks will be limited 
(e.g., 64 in the first conv block of our backbone network) when we try to 
ensure the computational efficiency, inputting all axial slices into a 
single backbone network would restrict the model’s feature extraction 
capability due to the insufficient number of channels. So, in our method 
we split each GM and WM image into two parts along vertical axis and 
embed the two parts respectively. In addition, the slices in each part are 
downsampled along the vertical axis with a 50% sampling ratio. 

According to previous pathology studies, lesions in the brains of AD 
patients are mostly concentrated in the gray matter, such as the gyrus of 
parietal, frontal and temporal lobe, hippocampus and amygdala, as well 
as in the white matter such as the corpus callosum [42]. To reduce the 
irrelevant regions in the images input into the model, and meanwhile, 
reduce the computation overhead of the model, we cropped the black 
edges and part of the cerebellar in the input images. Finally, the sizes of 
two parts of the 2.5D images after downsampling are h × w × c = 96 ×
96 × 25 and h × w × c = 96 × 96 × 22. 

3.4. Data augmentation 

To alleviate overfitting due to the small-size training set, we applied 
data augmentation for the training set in the training phase. The data 
augmentation methods used include: 1. Flipping along sagittal plane; 2. 
Gaussian blur/sharpening; 3. contrast adjustment; 4. adding gaussian 
noise; 5. brightness adjustment. The above augmentation methods were 
randomly applied to each 2.5D image before inputting to the model. 

3.5. Overall architecture 

In recent years, ViT and other transformer-based models have shown 
great results in CV tasks such as classification and semantic segmenta
tion. But so far, there are few works applying transformer in AD auto
matic diagnosis. We apply swin-transformer (swin-T) structure in our 
backbone network to improve the performance by introducing the self- 
attention mechanism. Since there is almost no convolution layer in the 
transformer-based models, the lack of inductive bias of convolution 
layer and relatively large model capacity make such type of models need 
to be trained on large datasets to get a good performance, and are more 
sensitive to hyperparameters such as weight decay. Xiao et al. [43] 
proposed that applying CNN in the early phase of ViT to encode low- 
level feature maps is beneficial for the above problems and can help 
the model converge faster and train more stably. 

For the above reasons, as shown in Fig. 1, our proposed ECSnet ap
plies convolution blocks to encode low-level features of input images 
before patch embedding block of swin-transformer. Since the self- 
attention operations in transformer are relatively costly compared to 
CNN, to reduce the size of the feature maps input into transformer 
layers, we replace the first two of the four stages of the original swin- 
transformer with convolution blocks. After being encoded and down
sampled in CNN stages, the 256-dimensional feature maps with 1/4 size 
of the original input images are embedded into tokens and fed into swin- 
transformer blocks for further features extraction. Considered finer 
granularity helps the model understand the features better, different 
from the original setting of 4 × 4, we set the patch size M2 = m × m to 3 
× 3, and the window size in window attention is set to 4 × 4. 

In order to get a more efficient model, we lightweighted the convo
lution blocks and swin-transformer blocks in our model, the modified 
blocks are called Efficient Conv Block (ECB) and Efficient swin- 
transformer block (ES-TB), both of which reduce the computational 
complexity and model capacity. 

As with the swin-transformer, we divide the backbone network into 
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four stages (Fig. 1), each with a series of ECBs or ES-TBs, and the number 
of blocks in the four stages is set to [1,2,6,3]. Maxpooling is used to 
downsample the feature maps at the end of stage 1 and stage 2, and the 
same patch merging approach as in the original swin-transformer is used 
for downsampling before feature maps fed into stage 4. 

Finally, we obtain a backbone network which combines CNN and 
swin-transformer. To correspond to the two parts of the input images 
based on the 2.5D method mentioned in Section 3.3, the model com
bines two backbone networks to form a two-stream structure. The fea
tures extracted by the two-stream network are obtained as two feature 
vectors of length 768 after global AveragePooling, and finally concate
nated as one feature vector to feed into a single-layer MLP for classifi
cation. Softmax is finally performed on the output vector of length 2 to 
get the probabilities of group AD and NC. 

3.6. Efficient Swin-transformer block 

To reduce the computational complexity of the swin-transformer 
stages, standard multi-headed self-attention (MSA) is replaced with a 
separable self-attention (SSA) of linear complexity. 

In the MSA mechanism, to get the attention matrices, three matrices 
called Query, Key and Value (Q, K, V) are generated by three linear 
projection layers (shown in Fig. 2.a). In window multi-headed self- 
attention (W-MSA), Q, K, V∈RW×M2×C, where W is the number of win
dows (windowed image size = w × w, W=w2). MSA and W-MSA 
compute self-attention in h groups by slicing Q, K, V into h heads, which 
allows the attention mechanism to converge knowledge from different 
subspaces and improve the understanding of models by computing 
multiple attention maps respectively. Since the self-attention 

mechanism can’t understand the relative position information in the 
feature maps, according to [44,45], the relative position bias B, which 
contains the patch relative position information, is added into the 
attention computation. The standard W-MSA can be described as 
follows: 
⎧
⎪⎪⎨

⎪⎪⎩

Q = WqX

K = WkX

V = WvX

Wq,Wk,Wv ∈ ℝC×C (1)  

W-MSA(Q,K,V)head = SoftMax
(
QKT

̅̅̅̅
C

√ + B
)

VWo (2) 

V will be linearly projected by Wo ∈ RC×C after being weighted by the 
attention maps. Supposing the size of feature map is C × h × w, the 
computational complexities of MSA and W-MSA are: 

Ω(MSA) = 4hwC2 + 2(hw)2C (3)  

Ω(W − MSA) = 4hwC2 + 2M2hwC (4) 

Although the local attention within the windows reduces the 
computational complexity from O((hw )

2
) to O(hw), its large-batch ma

trix multiplication is still a very costly operation. So, we introduced the 
separable self-attention (SSA) into our swin-transformer block. The SSA 
replace Q with a vector Input (I ∈ RW×M2 ), which is projected by a linear 
layer with weight Wi ∈ RC, and then transform the I into context scores 
Cs ∈ RW×M2 by applying a softmax (shown in Fig. 2.b). Different from the 
attention scores computed for each token with respect to all M2 tokens of 

Fig. 2. (a) Standard multi-headed self-attention and (b) separable self-attention. The attention phase of standard multi-head self-attention contains two matrix 
multiplications which are replaced by element-wise multiplications in separable self-attention. This method makes the computational complexity of self-attention 
linear to the resolution of input images h × w. Fig. 2 is adapted from Fig. 3 from [37]. 
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K in W-MSA, separable attention only calculates the context scores with 
respect to a latent token L, which is implicitly represented as learnable 
weight Wi in the SSA. The context vector Cv ∈ R1×C is then computed by 
using Cs to weight K: 

Cv =
∑M2

1
Cs(i)K(i) (5)  

Cv is a cheap analogue of the attention map in W-MSA, where the 
encoded contextual information is shared by all tokens in each window. 
With Cs and Cv, the matrix computation in standard MSA and W-MSA 
can be simplified to two cheaper element-wise multiplication operations 
Window attention approach also can be applied in SSA. Window sepa
rable self-attention (W-SSA) can be described as: 
⎧
⎪⎪⎨

⎪⎪⎩

I = WiX

K = WkX

V = WvX

Wi ∈ ℝC×1; Wk,Wv ∈ ℝC×C (6)  

W-SSA(I,K,V) =
∑

(SoftMax(I)⋅K )⋅ReLU(V)Wo (7) 

As with W-MSA, the output matrix will be finally linearly projected 
once more by Wo, and the computational complexity is: 

Ω(W-SSA) = hw
(
3C2 + C

)
+ 2hwC (8) 

The computational complexity of W-SSA is still O(hw), but the 
computational overhead of both the projection part and the attention 
part have reduced. Although the computational complexity of W-SSA is 
independent of the window size M × M, we found in our experiments 
that using window attention instead of global attention on our task and 
model leads to a more stable convergence in the late period of training. 

The structure of the proposed Efficient Swin-transformer Block is 
shown in Fig. 3. Each sub-block of ES-TB contains two sub-layers, which 
are two layer-normalization followed by W-SSA and MLP respectively. 
And the MLP contains two fully connected layers, the output dimension 
of input token is expanded to rexpand × C by the first layer, and then 
compressed back to C through the second one. The original setting of 
rexpand in swin-T is 4, but we found the quadruple expansion in the MLP 
brings a large amount of computational overhead to swin-T block. 
Therefore, we set the rexpand to 1 in the MLP layer. Moreover, window 
attention restricts the attention computation to the local parts of the 
feature maps, so that it cannot focus on long-range information as global 
attention does. In order to introduce connections across adjacent win
dows, we apply the same shifted window partitioning approach of swin 
transformer to W-SSA in the second sub-block of ES-TB. 

Fig. 3. Schematic diagram of the efficient swin-transformer block (ES-TB). (a) The structure of the proposed ES-TB is similar to the original swin-T block, but in order 
to get a more efficient block, we replace the W-MHA and SW-MHA by W-SSA and SW-SSA respectively. (b) The three-layer MLP in ES-TB. The expand ratio (rexpand) in 
the MLP layers is set to 1 in the ES-TB, instead of the 4 in the original swin-T block. (a) is adapted from Fig. 3(b) from [35] by Ze Liu et al., used under CC BY 4.0. 

Fig. 4. Changes of BAC with respect to the parameters and FLOPs of swin-T tiny and the models with different block setting. (a) BAC and the number of parameters, 
(b) BAC and FLOPs. 
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3.7. Efficient Conv block 

The standard convolution operation consists of Coutput kernels in each 
convolution layer, and the size of each convolution kernel is Cinput × k×
k, where k × k is the receptive field of the convolution kernel. Output 
feature maps are obtained by large amount of convolution multiplica
tion within dense connections between Coutput kernels and the Cinput 

feature maps. Supposing the size of output feature maps is h × w, the 
computational complexity of standard convolution is: 

Ω(standard conv) = CoutputCinputhwk2 (9) 

Obviously, the large amount of multi-add operations brings a high 
computational overhead, so the standard convolution blocks in the first 
two CNN stages are replaced with depth-wise separable convolution 
(DSC) in our method. A DSC consists of a deep-wise convolution (DWC) 
and a point-wise convolution (PWC). DWC is modified from group 
convolution, and the number of groups is set to be the same as the 
channels of the input feature maps. So that each convolution kernel of 
DWC contains only one filter and only multiplies with the corresponding 
one feature map, thereby getting a sparse convolution operation. And 
PWC is a standard convolution layer with a kernel size of 1 × 1, which 
introduces information exchange between different feature maps in 
PWC, and can linearly project the feature maps obtained from DWC into 
different output dimension. The computational complexity of DSC can 
be expressed as: 

Ω(DSC) = Cinputhwk2 + CoutputCinputhw (10) 

We also introduce the residual connection of ResNet [47] and the 
pre-normalization structure of swin-transformer into the Efficient conv 
block (ECB), and the activation function and normalization method are 
kept same with swin-transformer by using GELU and layer- 
normalization. In order to get a larger receptive field, the kernel size 
of the DWC is set to 5 × 5. 

4. Experiment & results 

In this section, we first present the implementation details of our 
experiments. Secondly, several ablation studies were performed to 
evaluate the effectiveness of the approaches used in our proposed 
ECSnet; then we compared the performance of the two-stream models 
formed by different backbone networks to validate the advantages of our 
backbone over classical 2D models. Finally, we compare the perfor
mance of our model with that of previous works which evaluated on 
similar subsets of AIBL. 

4.1. Implementation and experimental settings 

The training and testing tasks were implemented on Python 3.8.8 
and Pytorch 1.10.0 with an Intel Core i5-11400H with 16 GB of RAM 
and an NVIDIA GeForce RTX 3060 GPU 6 GB. 

In our experiments, all training data were allocated from the 865 
subjects of ADNI dataset. When evaluating the performance on the 
ADNI, the models were evaluated by using 5-fold cross-validation to 
make the results more robust. 20% non-overlapping data were allocated 
each time as the validation set, and the average results that obtained 

from the five validation sets were used to evaluate the performance. 
When using the data from AIBL as the test set, all the data from ADNI 
was used as training data, and the models were trained on the training 
set for 55 epochs. 

The feature dimension of the 2.5D input image is expanded to 64 
through the first convolution block, and then expanded twice as large 
after each maxpooling layer. After the first two stages, 384-dimensional 
tokens are obtained by patch embedding layer. 

In the training stage, the proposed ECSnet was trained by using 
AdamW optimizer with weight decay, the initial learning rate was set as 
1 × 10− 5with an 85% decay per 20 epochs, and the weight decay was set 
as 0.04. A weighted cross entropy function was used to measure the 
classification loss to reduce the impact of class-imbalance, whose weight 
was calculated based on the ratio of AD and NC subjects in the training 
set, so that the loss function will be more biased towards the group with 
fewer subjects. The batch size and drop-rate in output layer are set to 32 
and 0.3 respectively. 

We evaluated the model performance from multiple perspectives by 
using metrics including accuracy, sensitivity(recall), specificity, balance 
accuracy (BAC), ROC curve and corresponding AUC [46]. The accuracy, 
sensitivity and specificity can be defined as: 

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(11)  

Sensitivity =
TP

TP+ FN
(12)  

Specificity =
TN

TN + FP
(13) 

Given the class-imbalance problem in the evaluation data, BAC is a 
better metric than ACC because the accuracies of both positive and 
negative groups are considered, while standard ACC will be more biased 
towards the group with more subjects. BAC can be expressed as: 

BAC =
Sensitivity+ Specificity

2
(14)  

4.2. Ablation study 

In the proposed ECSnet, we lightened the convolutional blocks and 
the swin-transformer blocks by applying DSC and W-SSA. In order to 
evaluate the impact on performance and efficiency of these approaches, 
we performed an ablation study by applying different block settings on 
our model, listing the classification results on ADNI, number of pa
rameters and computational overhead for each model (Table 2). When 
ECBs or ES-TBs are not applied in the backbone, we use standard con
volutional block (SCB) and standard swin-T block (SS-TB) to replace 
them. The SCB consists of a layer-normalization layer followed by a 
standard convolution layer, and the kernel size is set to 3 × 3. The SS-TB 
has the same structure as the original swin-T block, and the rexpand of the 
MLP is also set to 4. 

As shown in Table 2, the ES-TB reduces the computational overhead 
while also significantly reducing the number of parameters; however, 
the ECB contains one more layer normalization operation, so the pa
rameters is more than that of the SCB, but it also significantly reduces 
the calculation overhead. While the number of parameters is reduced by 

Table 2 
Classification performance on ADNI, number of parameters and computational overhead of the two-stream models using different block settings.  

Block setting ACC BAC SEN SPC AUC Params FLOPs 

Efficient Conv Block Efficient swin-T Block   

0.926 0.922 0.904 0.939 0.962 71.9 M 3.92G  
✓ 0.933 0.931 0.926 0.937 0.962 34.7 M 2.72G 

✓  0.921 0.915 0.891 0.939 0.953 74.5 M 2.53G 
✓ ✓ 0.939 0.936 0.925 0.947 0.964 37.4 M 1.33G  
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adding the lightweight approaches into the model, the performance of 
the model does not degenerate. The sensitivity of 92.5% achieved by the 
model with ECB and ES-TB (our ECSnet) is slightly lower than 92.6% of 
the model applied SCB and ES-TB, but ECSnet has better performance in 
all other metrics. On the ADNI dataset, our ECSnet achieved 93.9% ac
curacy and 0.964 AUC, while the FLOPs and number of parameters were 
only 33.9% and 52.0% of those of the model with SCB and SS-TB. 

We apply the CNN structure in the first two stages of the backbone 
network to enhance the model’s ability by introducing the inductive 
bias, and we evaluated the effectiveness of this method on the ADNI and 
AIBL datasets. When not replacing the first two stages of the model with 
CNN in the experiments, the backbone network keeps the same structure 
as swin-T tiny with the number of blocks in the four stages [2,2,6,2], but 
still replace the W-MSA by W-SSA. The results (Table 3) show that on 
both ADNI and AIBL datasets, our proposed model achieves better per
formance in all metrics, with significantly higher BAC (92.8%) and SEN 
(91.1%) on AIBL. 

To validate the effectiveness of our 2.5D method, we also compared 
the performance of different input methods (Fig. 5). Specifically, there 
are five input methods: 1. Extract two 2D slices as input images from the 
middle of the vertical axis direction of our two parts 2.5D image; 2. Feed 
the input images into a one-stream network without dividing them into 
two parts, and do not downsample them along the vertical axis; 3. Feed 
the input images into a one-stream network without dividing it into two 
parts, but downsample them along the vertical axis; 4. Divide the image 
into two parts but without downsampling; 5. Divide the images into two 
parts and perform downsampling. 

With results reported in Fig. 5, the 2.5D method significantly 
improved the models’ performance. And together with the use of 
downsampling method, the model performs more balanced in the clas
sification of positive and negative subjects. In addition to the improve
ment in classification performance, the downsampling method can also 
reduce the computation on CPU during random data augmentation, 
making the training more efficient. 

4.3. Methods comparison 

4.3.1. Comparison of different hyperparameter settings 
In ECSnet, we divide the backbone network into four stages, and the 

feature maps are downsampled while being fed forward through 
different stages. We evaluated the classification performance with 
different stage strategies, while keeping the depth of CNN stages and 
swin-T stages same as that in ECSnet. Through the downsampling, the 
receptive field is expanded. The results (Table 4) show that the 4-stage 
strategy is beneficial to the model performance. 

The hyperparameters play an important role in the model training. 
We evaluated the classification performance of our ECSnet with 
different hyperparameter settings (Table 5 and Fig. 6), specifically, the 
weight decay in optimizer Adam, the expand ration of MLP in the ES-TB 
and the number of feature maps (channels). 

4.3.2. Comparison of different methods 
Then we compared the performance of models using previous solid 

2D natural image classification backbone networks to form our proposed 
two-stream network. In the experiment, our proposed backbone network 
was replaced with swin-T tiny, ResNet34, ResNet18, DenseNet121 and 
SE_ResNet18 respectively and performed five-fold validations on ADNI 
and AIBL. We also calculated the number of parameters and the 
computational overhead of the models. All the models are compared 
under the same training strategy, data augmentation strategy and 
optimizer as our ECSnet. The learning rate and weight decay in AdamW 
optimizer are set to 1×10− 5, 0.01 for the CNN backbones and 1×10− 5, 
0.05 for the swin-T tiny. 

Table 3 
Classification performance of models with or without CNN structure on ADNI 
and AIBL.  

Method Dataset ACC BAC SEN SPC AUC 

swin-T tiny with ES-TB ADNI 0.927 0.926 0.922 0.930 0.962 
Our model 0.939 0.936 0.925 0.947 0.964 
swin-T tiny with ES-TB AIBL 0.896 0.882 0.861 0.902 0.940 
Our Method 0.939 0.928 0.911 0.944 0.963  

Fig. 5. Results of the models with different input methods on ADNI. The methods are: 1. Extract two 2D slices as input images from the middle of the vertical axis 
direction of our two parts 2.5D image (two-stream 2D-slice); 2. Feed the input images into a one-stream network without dividing them into two parts, and do not 
downsample them along the vertical axis (1-steam no-downsampling); 3. Feed the input images into a one-stream network without dividing it into two parts, but 
downsample them along the vertical axis (1-stream); 4. Divide the image into two parts but without downsampling (two-stream no-downsampling); 5. Divide the 
image into two parts and perform downsampling (our method). 

Table 4 
Classification performance of different stage strategies on ADNI.  

Number of stages ECBs in CNN stages ES-TBs in Swin-T stages ACC BAC SEN SPC AUC 

2 [3] [9] 0.910 0.909 0.911 0.906 0.947 
3 [1,2] [9] 0.925 0.919 0.894 0.944 0.954 
4(ECSnet) [1,2] [6,3] 0.939 0.936 0.925 0.947 0.964  
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As shown in Table 6, obviously, the parameters and computational 
cost of the models based on transformer are relatively large compared 
with the CNN models. Our proposed backbone network reduces the 
computational complexity to be close to that of the 2D CNN models 
while achieving the best results on ADNI in all evaluation metrics except 
SPC. On the AIBL (Fig. 7), it can be seen that the model based on our 
proposed backbone (ECSnet) achieved the best results in most of the 
metrics, and the ECSnet has obvious advantages in BAC and SEN (92.8% 
and 91.1%), and 93.9% of ACC and 0.963 of AUC are also higher than 
those of other models. 

In order to compare with previous works more fairly, we used the 
data from AIBL as an independent test set and compared the results with 
SOTA models which were evaluated on similar subsets. 

As shown in Table 7, these previous methods are all based on 3D 
networks such as 3D CNN to extract features, but our 2.5D method 
whose backbone network is only based on 2D methods allows our model 
to have a relatively small computational overhead. At the same time, our 
model achieved a great performance. The BAC (92.8%) and SEN (91.1%) 

of our ECSnet are significantly better than the 88.2 ~ 91.0% and 72.3% 
~88.9% of other methods, other metrics are also close to the SOTA 
models. It is worth noting that the method in [41] included clinical in
formation such as MMSE scores as input features, while the rest of the 
methods only used original or standardized sMRI images. 

5. Discussion 

5.1. Experimental discussion 

Although many works have achieved encouraging results in com
puter aided AD diagnosis based on sMRI and deep learning, there are 
still many limitations in applying the methods to the clinic. In this study, 
in order to avoid the use of 3D algorithms which would greatly increase 
the model parameters and computational overhead in our model, our 
proposed ECSnet was built on a two-stream structure and applied a 2.5D 
subject-level method which can reduce the loss of 3D information while 
keeping efficient by using 2D algorithms. The ECSnet was also applied a 

Table 5 
Classification performance of different hyperparameter settings on AIBL. The default setting of the ECSnet is: Weight decay = 0.04, MLP expand ratio = 1.0, number of 
channels in each stage of the backbone networks = [64, 128, 384, 768].  

hyperparameter settings ACC BAC SEN SPC AUC Params FLOPs 

Weight decay 0.02 0.917 0.914 0.911 0.917 0.954 37.4 M 1.33G 
0.03 0.936 0.925 0.911 0.940 0.961 
0.04 0.939 0.928 0.911 0.944 0.963 
0.05 0.917 0.914 0.911 0.917 0.961 

MLP expand ratio 1.0 0.939 0.928 0.911 0.944 0.963 37.4 M 1.33G 
1.5 0.934 0.924 0.911 0.938 0.950 42.7 M 1.50G 
2.0 0.932 0.919 0.899 0.938 0.959 48.0 M 1.67G 
2.5 0.932 0.928 0.924 0.933 0.960 53.3 M 1.84G 
3.0 0.920 0.912 0.899 0.924 0.961 58.7 M 2.01G 

Stage channels [32,64,192,384] 0.922 0.907 0.886 0.928 0.953 11.7 M 0.36G 
[48,96,288,576] 0.924 0.903 0.873 0.933 0.953 22.1 M 0.77G 
[64,128,384,768] 0.939 0.928 0.911 0.944 0.963 37.4 M 1.33G 
[80,160,480,960] 0.936 0.931 0.924 0.938 0.960 55.9 M 2.04G  

Fig. 6. ROC curves and AUC of different hyperparameter settings on AIBL. (a)weight decay in Adam, (b)expand ratio of MLP in ES-TB, (c) number of channels in each 
stage of the backbone networks. 

Table 6 
Performance on ADNI of the proposed two-stream networks with different 2D backbones.  

Backbone ACC BAC SEN SPC AUC Params FLOPs 

swin-T tiny [35] 0.926 0.924 0.909 0.938 0.962 55.0 M 2.91G 
ResNet34 [47] 0.905 0.898 0.866 0.930 0.947 42.7 M 1.64G 
ResNet18 [47] 0.916 0.914 0.905 0.923 0.956 22.5 M 0.96G 
SE_ResNet18 [48] 0.926 0.919 0.887 0.951 0.962 22.7 M 0.96G 
DenseNet121 [32] 0.908 0.906 0.899 0.913 0.948 14.0 M 1.35G 
our Backbone(ECSnet) 0.939 0.936 0.925 0.947 0.964 37.4 M 1.33G  
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series of lightweight approaches that make it easy to train and deploy 
the model on computers without high performance. 

We applied a series of lightweight methods to simplify our backbone 
network and deal with the overfitting by applying data augmentation, 
two-stream structure and 2.5D method. With a 5-fold validation, our 
model achieved an accuracy of 93.9% and an AUC of 0.964 on the ADNI 
dataset, which are close to the previous works. We also performed an 
ablation study to evaluate the impact of the lightweight methods on 
model performance, parameters, and computational overhead (Fig. 4.a). 
The results show that the BAC on ADNI dataset subsequently increases as 
ECB and ES-TB are applied in the backbone; and as shown in Fig. 4.b, the 
lightweight methods significantly reduce the computational overhead, 
while the model performance is not impaired. The number of parameters 
and FLOPs are only 68% and 45.7% of those of the swin-transformer tiny 
respectively while the performance is even better. With the results re
ported in Table 3, the performance degraded slightly on ADNI but 
sharply on AIBL when the early-stage CNN method is not applied to the 
backbone. That validates the generalization ability of the model on 
unseen data, which is brought by the inductive bias of convolution 
layers. In brief, our 2.5D method combined with early-stage CNN 
method allows the model to achieve a good performance while being 
lightweight. 

We also validate the effectiveness of the methods on the independent 
test set allocated from AIBL (Table 7). Our model achieved BAC of 92.8% 
and SEN of 91.1%, which are significantly higher than those of the 
compared state-of-the-art models, and other metrics are also close to the 
SOTA models. The results also indicate that the 2.5D method, two- 
stream structure and the CNN used in the early stages can improve the 
model’s ability of encoding features and the generalization perfor
mance. Moreover, compared to the 3D subject-level and 3D patch-level 

models, the training of our lightweight 2.5D models requires less 
computing resource and takes less time (about 12 mins each training in 
our experiments). In recent years, some works [27,41] applied risky 
region identification algorithms that were usually developed on 3D 
models like fully convolution net (FCN) in the AD diagnosis. With the 
identification algorithms, only high-risk regions were kept, so that the 
redundant data fed into the following classification models could be 
reduced. However, the approaches also made the training of these 
methods more costly. In contrast, our ECSnet can achieve close or even 
better and more balanced performance with only a one-time end-to-end 
training. 

5.2. Future works 

As the early stage of AD, the diagnosis of MCI is also important to the 
early disease intervention. We performed 5-fold validations to evaluate 
the model performance on MCI diagnosis tasks on ADNI. Subjects from 
the MCI group who converted to AD within 36 months after the first scan 
were classified as pMCI and the rest as sMCI. As shown in Table 8, our 
model achieved potential results. In the future, we can try to extend our 

Fig. 7. Performance on AIBL of the proposed two-stream networks with different 2D backbones. (a) ROC curve of the models, (b) histogram of the ACC and BAC, (c) 
histogram of the SEN and SPC. 

Table 7 
Performance comparison with state-of-the-art methods on AIBL.  

Methods Groups (AD/ NC) Data ACC BAC SEN SPC AUC Approach 

Lian et al. 
(2020)[28] 

72/447 skull-stripped sMRI 0.898 0.887 0.873 0.902 0.946 3D patch-level 

Qiu et al. 
(2020)[41] 

62/320 sMRI+clinical data 0.932 0.910 0.877 0.943 0.974 3D subject-level 

Zhu et al. 
(2021)[27] 

79/307 skull-stripped sMRI 0.902 0.882 0.848 0.915 0.939 3D patch-level 

Han et al. 
(2022) [49] 

72/359 skull-stripped sMRI 0.923 0.910 0.889 0.930 0.950 3D subject-level 

Li et al. 
(2022)[50] 

79/448 sMRI GM 0.939 0.851 0.723 0.978 0.957 3D subject-level 

Our Method 79/449 sMRI GM&WM 0.939 0.928 0.911 0.944 0.963 2.5D subject-level  

Table 8 
Classification performance of the proposed model on MCI diagnosis task.  

Groups(pMCI/ 
sMCI) 

Task ACC SEN SPC AUC 

138/218 (AD & pMCI) vs sMCI 0.771 0.820 0.682 0.807 
pMCI vs NC 0.932 0.877 0.947 0.957 
sMCI vs NC 0.842 0.779 0.863 0.897 
(sMCI & pMCI) vs NC 0.859 0.863 0.857 0.930  
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work to improve the performance of MCI classification. 
Except for image data such as sMRI and PET, several types of non- 

imaging data are often used for the diagnosis or study of AD, such as 
subjects’ gender, age, ApoE4, Aβ42 and neuropsychological scales. 
However, the genetic information, biomarker information and images 
like PET are only available for part of the subjects in most datasets, and 
the small amount of data makes their application in deep learning 
methods more challenging. For the above reasons, we did not include 
these modalities in this study. In possible future works, we can try to 
collect more multi-modal data or develop an effective data imputation 
algorithm (e.g., GAN), improving the model performance by utilizing 
the multi-modal model. The Fig. 8 depicts the block diagram of possible 
future works and implementation of AD/MCI diagnosis model. 

6. Conclusion 

We proposed a backbone network that combines CNN and swin- 
transformer to form an efficient two-stream model named ECSnet for 
automatic AD diagnosis with sMRI. Firstly, we applied CNN structure at 
the early stage of our transformer-based backbone to improve the 
generalization ability by introducing the inductive bias. Secondly, we 
built the model on a two-stream structure and applied a 2.5D method to 
the model to enhance the ability of encoding 3D features with 2D al
gorithms. Finally, we applied a series of lightweight methods in our 
model to make the parameters and computational overhead less than 
recent state-of-the-art models which are mostly based on costly 3D al
gorithms. Compared to the SOTA models, our ECSnet is a 2D end-to-end 
model that is efficient in training and inference, and can achieve similar 
or even better performance, demonstrating the effectiveness of our 
proposed methods and the trade-off between computational overhead 
and model performance. 
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